

Language: Russian

Day: **1**

Воскресенье, 13 апреля 2025 года

Задача 1. Для положительного целого числа N обозначим через $c_1 < c_2 < \ldots < c_m$ все положительные целые числа, меньшие N и взаимно простые с N. Найдите все такие $N \geqslant 3$, что

$$HOД(N, c_i + c_{i+1}) \neq 1$$

для всех $1 \leqslant i \leqslant m-1$.

Language: Russian

3десь HOД(a,b) это наибольший общий делитель. Числа a и b называются взаимно простыми, если HOД(a,b)=1.

Задача 2. Бесконечную возрастающую последовательность $a_1 < a_2 < a_3 < \dots$ положительных целых чисел назовём *центральной*, если для каждого положительного целого n среднее арифметическое первых a_n членов последовательности равно a_n .

Докажите, что существует бесконечная последовательность положительных целых чисел b_1 , b_2 , b_3 , ... такая, что для любой центральной последовательности a_1 , a_2 , a_3 , ... существует бесконечно много n, что $a_n = b_n$.

Задача 3. Дан остроугольный треугольник ABC. Точки $B,\,D,\,E,\,C$ лежат на одной прямой в указанном порядке и удовлетворяют равенствам BD=DE=EC. Точки M и N — середины отрезков AD и AE соответственно. Известно, что треугольник ADE остроугольный, а H — точка пересечения высот этого треугольника. Пусть точки P и Q лежат на прямых BM и CN соответственно так, что точки $D,\,H,\,M,\,P$ попарно разные и лежат на одной окружности, и точки $E,\,H,\,N,\,Q$ попарно разные и лежат на одной окружности. Докажите, что точки $P,\,Q,\,N,\,M$ лежат на одной окружности.

Время работы: 4 часа и 30 минут Каждая задача оценивается в 7 баллов